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The criticality of the �2+1�-dimensional XY model is investigated with the numerical diagonalization
method. So far, it has been considered that the diagonalization method would not be very suitable for analyzing
the criticality in large dimensions �d�3�; in fact, the tractable system size with the diagonalization method is
severely restricted. In this paper, we employ Novotny’s method, which enables us to treat a variety of system
sizes N=6,8 , . . . ,20 �N is the number of spins constituting a cluster�. For that purpose, we develop an
off-diagonal version of Novotny’s method to adopt the off-diagonal �quantum-mechanical XY� interaction.
Moreover, in order to improve the finite-size-scaling behavior, we tune the coupling-constant parameters to a
scale-invariant point. As a result, we estimate the critical indices as �=0.675�20� and � /�=1.97�10�.
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I. INTRODUCTION

It has been considered that the diagonalization method
would not be very suitable for analyzing the criticality in
large dimensions d�3. In fact, as the system size enlarges,
the number of spins constituting a cluster increases rapidly in
d�3, and the dimensionality of the Hilbert space soon ex-
ceeds the limitation of available computer resources. Such a
severe limitation as to the tractable system size prevents us
from making a systematic analysis of the simulation data.

To cope with this difficulty, Novotny proposed a transfer-
matrix formalism �1–3�, which enables us to construct a
transfer-matrix unit with an arbitrary �integral� number of
spins N; note that conventionally, the number of spins is
restricted within N=2d−1 ,3d−1 , . . .. As a demonstration, No-
votny simulated the Ising model in d�7 systematically �3�.
Meanwhile, it has been shown that the idea is applicable to a
wide class of systems such as the frustrated Ising model �4�
and the quantum-mechanical Ising model under the trans-
verse magnetic field �5�.

In this paper, we extend the Novotny method to adopt the
off-diagonal �quantum-mechanical XY� interaction; see the
Hamiltonian, Eq. �1�, mentioned afterward. Actually, as men-
tioned above, the use of Novotny’s method has been re-
stricted within the case of the diagonal �Ising-type� interac-
tion. As a demonstration, we apply the method to the �2
+1�-dimensional XY model with a variety of system sizes
N=6,8 , . . . ,20. Taking advantage of the fact that a series of
system sizes are available, we made a systematic finite-size-
scaling analysis of the simulation data. As a result, we esti-
mate the critical indices as �=0.675�20� and � /�=1.97�10�.
Recent developments on the d=3 XY universality class are
overviewed in Ref. �6� with an emphasis on the
microgravity-environment experiment; see also Refs. �7–11�.
Our method provides an alternative approach to the d=3 XY
universality class.

To be specific, we consider the following Hamiltonian for
the �2+1�-dimensional XY model �12–14� with the extended
interactions:

H = − JNN�
�ij�

�Si
xSj

x + Si
ySj

y� − JNNN �
��ij��

�Si
xSj

x + Si
ySj

y�

+ D� �
�ijkl�

�Si
z + Sj

z + Sk
z + Sl

z�2 + D�
i

�Si
z�2. �1�

Here, the quantum spin-1 �S=1� operators �Si	 are placed at
each square-lattice point i. The summations, ��ij�, ���ij��, and
��ijkl�, run over all possible nearest-neighbor, next-nearest-
neighbor, and plaquette spins, respectively. The parameters,
JNN, JNNN, and D�, are the corresponding coupling con-
stants. The single-ion anisotropy D drives the system from
the XY phase �D�Dc� to the large-D phase �D�Dc�. �In the
large-D phase, the ground state is magnetically disordered,
accompanied with a finite excitation gap.� Our aim is to sur-
vey the criticality by means of the off-diagonal Novotny
method.

The Hamiltonian �1� has a number of tunable parameters.
We fixed them to

�JNN,JNNN,D�� = �0.158 242 810 160,0.058 561 393 564,

0.100 351 043 89� , �2�

and survey the D-driven phase transition. As explicated in
the Appendix, around the point �2�, the finite-size-scaling
behavior improves significantly; the irrelevant interactions
cancel out, because the point �2� is a scale-invariant point
with respect to the real-space decimation shown in Fig. 9.
Such an elimination of finite-size corrections has been uti-
lized successfully to analyze the criticality of the classical
systems such as the Ising model �15,16� and the lattice 	4

theory �17,18�. We adopt the idea to investigate a quantum-
mechanical system, Eq. �1�.

The rest of this paper is organized as follows. In Sec. II,
we develop an off-diagonal version of the Novotny method.
In Sec. III, employing this method, we simulate the
�2+1�-dimensional XY model �1�. In Sec. IV, we present the
summary and discussions. In the Appendix, we determine a
scale-invariant point �2� with respect to the real-space deci-
mation shown in Fig. 9.
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II. OFF-DIAGONAL NOVOTNY’S METHOD

In this section, we explain the simulation scheme. As
mentioned in the Introduction, we develop an off-diagonal
version of Novotny’s method to simulate the
�2+1�-dimensional XY model �1�; so far, the Novotny
method has been applied to the case of Ising-type interac-
tions �1–5�.

To begin with, we explain the basic idea of Novotny’s
method. Novotny’s method allows us to construct a cluster
with an arbitrary number of spins; see Fig. 1. As indicated,
the basic structure of the cluster is one-dimensional. The
dimensionality is lifted to d=2 by the bridges over the
�
N�th-neighbor pairs. Because the basic structure is one-
dimensional, we are able to construct a cluster with an arbi-
trary �integral� number of spins �Si	 �i=1,2 , . . . ,N�; note that
naively, the number of spins is restricted within N
=4,9 ,16, . . . in d=2.

We formulate the above idea explicitly. We propose the
following expression:

H = − JNN�HXY�1� + HXY�
N�� − JNNN�HXY�
N + 1�

+ H�
N − 1�� + D�H��
N� + D�
i=1

N

�Si
z�2, �3�

for the Hamiltonian of the �2+1�-dimensional XY model �1�.
The component HXY����v� describes the XY �plaquette� inter-
action over the vth-neighbor pairs; see Fig. 1. Because the
quantum XY interaction, HXY�v�, is an off-diagonal one, we
need to develop an off-diagonal version of Novotny’s
method. We propose the following expression:

HXY�v� = �
i=1

N

�PvSi
xP−vSi

x + PvSi
yP−vSi

y� . �4�

This formula serves as a basis of the off-diagonal Novotny
method. The symbol P denotes the translation operator by
one lattice spacing,

P�S1,S2, . . . ,SN� = �SN,S1, . . . ,SN−1� . �5�

�We impose the periodic boundary condition, SN+1=S1.�
Here, the base ��Sk	� diagonalizes the �Si

z	 operators; namely,
it satisfies

Sl
z��Sk	� = Sl��Sk	� �6�

for each l=1,2 , . . . ,N. The insertions of the operators P
v in
Eq. �4� introduce the vth-neighbor interaction along the
alignment of spins �Si	; symbolically, the operator PvSi

�P−v

may be written as Si+v
� . On the other hand, as for H��v�, we

adopt the conventional idea based on the diagonal Novotny
method �1�. That is, its diagonal elements ���Sk	�H��v���Sk	�	
are given by

��Sk	�H��v���Sk	� = ��Sk	�PvT��Sk	� , �7�

with the four-spin interaction

��Sk	�T��Tk	� = �
l=1

N

SlSl+1TlTl+1. �8�

Similarly, the insertion of Pv introduces the vth-neighbor in-
teraction. However, in the diagonal scheme �7�, one opera-
tion of Pv suffices; note that in the off-diagonal formalism
�4�, two operations P
v are required. Because each operation
P
v requires huge computational effort, the off-diagonal
scheme is computationally demanding. Afterward, we pro-
vide a number of formulas useful for the practical implemen-
tation of the algorithm.

The above formulas complete the formal basis of our
simulation scheme. Aiming to improve the simulation result,
we implement the following symmetrization technique �2�.
That is, we symmetrize the component HXY,��v� by replac-
ing it with

HXY,��v� → �HXY,��v� + HXY,��− v��/2. �9�

This replacement restores the symmetry between the ascend-
ing, S1 ,S2 , . . . ,SN, and the descending, SN ,SN−1 , . . . ,S1, di-
rections completely.

Last, we provide a number of formulas that may be useful
in the practical implementation of the algorithm. We utilize
the translationally invariant bases ��k ,n�	, which diagonalize
the operator P,

P�k,n� = eik�k,n� . �10�

Here, the wave number k runs over a Brillouin zone k
=2�M /N �M is an integer�, and the index n specifies the
state within the subspace k. As anticipated, the bases ��k ,n�	
are useful to obtain an explicit representation of the formulas
mentioned above. For instance, the first term of the formula
�4� is represented by

�k,n�
j=1

N

Sj
xPvSj

xP−vk,m� = �
j=1

N

�
k�,n�

�k,n�Sj
x�k�,n��

�k�,n��Sj
x�k,m�ei�k�−k�v,

�11�

S1

S2 Sj

Sj+1+N 1/2

SN

Sj+N 1/2JNN

JNNN

FIG. 1. A schematic drawing of the spin cluster for the d=2
quantum XY model �1� is presented. As indicated above, the spins
constitute a one-dimensional alignment �Si	 �i=1,2 , . . . ,N�, and the
dimensionality is lifted to d=2 by the bridges over the
�N1/2�th-neighbor pairs. This is a basic idea of Novotny’s diagonal-
ization method. We need to develop an off-diagonal version of No-
votny’s method, because we have to adopt the quantum XY interac-
tion �1�; see Sec. II.
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in terms of the frame ��k ,n�	. Because the parameter v is, in
general, an irrational number, the oscillating factor ei�k�−k�v is
incommensurate with respect to the lattice periodicity.
Hence, the intermediate summation �k� has to be treated
carefully; namely, each Brillouin zone �k�	 is no longer
equivalent. We accepted the following symmetrized sum:

�
k�

ak� =
1

2
a−� + a−�+2�/N + a−�+4�/N + . . . + a�−2�/N +

1

2
a�,

�12�

with respect to a summand ak�. Here, the denominators of the
first and the last terms compensate the duplicated sum at the
edges of the Brillouin zone �−� ,��. �Similarly, we obtain an
explicit representation for H��v� via the conventional No-
votny method �1,2�.� Provided that the explicit matrix ele-
ments of HXY,��v� are at hand, we are able to perform the
numerical diagonalization of the Hamiltonian �3�. The results
are shown in the next section.

Last, we make an overview of the S=1 XY model �1�. As
mentioned in the Introduction, the model has been studied in
Refs. �12–14�. In the case of d=1 dimension, the criticality
�D-driven phase transition� was investigated in detail �19�.
According to Ref. �19�, for sufficiently large D, a magneti-
cally disordered ground state �large-D phase� appears, and
the criticality is identical to that of the classical counterpart
in d+1�=2� dimensions �KT transition�. Unfortunately, a na-
ive extension to the case of S= 1

2 is not appropriate, because
the D anisotropy, D�Si

z�2, reduces to a constant term, D /4.
�Moreover, the transverse magnetic field violates the XY
symmetry, and the criticality changes into the Ising type.� As
a matter of fact, it is difficult to realize a ground-state phase
transition for the S= 1

2 model without violating the transla-
tional invariance and the rotational symmetry. �Possibly, the
double-plane S= 1

2 model may exhibit a desirable criticality
by tuning the interplane interaction. However, this model is
too complicated.� Hence, we consider the S=1 XY model �1�
with the D-anisotropy term.

III. NUMERICAL RESULTS

In this section, we analyze the criticality of the
�2+1�-dimensional XY model, Eq. �1�. As mentioned in the
Introduction, the coupling-constant parameters
�JNN,JNNN,D�� are set to the scale-invariant point �2�.
Thereby, we survey the D-driven phase transition with the
finite-size scaling. In order to diagonalize the Hamiltonian,
we utilize the off-diagonal Novotny method developed in
Sec. II. Owing to this method, we treat a variety of system
sizes N=6,8 , . . . ,20. The linear dimension L of the cluster is
given by

L = 
N , �13�

because the N spins constitute a rectangular cluster; see
Fig. 1.

A. Transition point

In this section, we provide evidence of the D-driven phase
transition, and estimate the critical point Dc with the finite-
size scaling.

In Fig. 2, we plot the scaled energy gap L�E for various
D, and N=6,8 , . . . ,20 with the other coupling constants
fixed to Eq. �2�. The symbol �E denotes the first-excitation
gap. According to the finite-size scaling, the scaled energy
gap L�E should be invariant at the critical point. Indeed, we
observe an onset of the D-driven phase transition around D
�1.

In Fig. 3, we plot the approximate transition point
Dc�L1 ,L2� for �2 / �L1+L2��3 with 6�N1�N2�20 and L1,2
=
N1,2; the validity of the 1 /L3-extrapolation scheme �ab-
scissa scale� is considered at the end of this section. Here, the
approximate transition point Dc�L1 ,L2� denotes a scale-
invariant point with respect to a pair of system sizes �L1 ,L2�.
Namely, the approximate transition point satisfies the equa-
tion
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FIG. 2. Scaled energy gap L�E is plotted for various D and N
=6,8 , . . . ,20 �L=
N�; note that we survey the D-driven phase tran-
sition with the other interactions, �JNN,JNNN,D��, adjusted to a
fixed point �2�. We observe a clear indication of the D-driven tran-
sition around D�1. Apparently, the finite-size-scaling behavior is
improved as compared to that of the conventional XY model �Fig.
4�.
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FIG. 3. The approximate critical point Dc �14� is plotted for
�2 / �L1+L2��3 with 6�N1�N2�20 �L1,2=
N1,2�. The least-
squares fit to these data yields Dc=0.9569�83� in the thermody-
namic limit L→�.
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L1�E��L1��D=Dc�L1,L2� = L2�E��L2��D=Dc�L1,L2�. �14�

The least-squares fit to the data of Fig. 3 yields Dc
=0.9569�83� in the thermodynamic limit, L→�. As a refer-
ence, we calculated Dc=0.9744�68� through the
1 /L4-extrapolation scheme. Considering the deviation as an
error indicator, we estimate the critical point as

Dc = 0.957�25� . �15�

Let us mention a few remarks. First, we consider the ab-
scissa scale 1 /L3 utilized in Fig. 3. Naively, the scaling
theory predicts that dominant corrections to Dc should scale
like 1 /L�+1/� with �=0.785�20� and �=0.6717�1� �11�. On
the one hand, in our simulation, such dominant corrections
should be suppressed by tuning the coupling constants to Eq.
�2�; see the Appendix. The convergence to the thermody-
namic limit may be accelerated �16�. �For extremely large
system sizes, the singularity 1 /L�+1/� may emerge.� Hence,
in Fig. 3, we set the abscissa scale to 1 /L3. Second, we argue
a consistency between the finite-size scaling and the real-
space decimation; in the Appendix, we made a fixed-point
analysis �A11�, regarding D as a unit of energy D=1 �A7�.
This proposition D=1 is quite consistent with the above scal-
ing result �15�, validating the fixed-point analysis in the Ap-
pendix. In other words, around the fixed point �A11�, correc-
tions to scaling may cancel out satisfactorily. Encouraged by
this consistency, in Sec. III C, we survey the criticality rather
in detail.

B. Comparison with the conventional XY model

In the preceding section, we simulated the XY model �1�
with the finely tuned coupling constants �2�. As a compari-
son, in this section, we provide the data for the conventional
XY model. That is, we turn off the extended coupling con-
stants, setting the interactions to �JNN,JNNN,D��= �0.2,0 ,0�
tentatively.

In Fig. 4, we plot the scaled energy gap L�E for various
D and N=6,8 , . . . ,20. We observe an onset of the D-driven

phase transition around D�1.1. However, the data are scat-
tered, as compared to those of Fig. 2. In fact, in Fig. 4, the
location of the transition point appears to be less clear. This
result demonstrates that the finely tuned coupling constants
�2� lead to elimination of finite-size corrections.

C. Critical exponents

In Sec. III A, we observe an onset of the D-driven phase
transition. In this section, we calculate the critical exponents,
� and � /�, based on the finite-size scaling.

In Fig. 5, we plot the approximate critical exponent

��L1,L2� =
ln�L1/L2�

ln���D�L1�E�L1��/�D�L2�E�L2��	�D=Dc

�16�

for �2 / �L1+L2��2 with 6�N1�N2�20 �L1,2=
N1,2�, and
Dc=0.957 �Eq. �15��; afterward, we consider the abscissa
scale, 1 /L2. The least-squares fit to these data yields �
=0.675�16�. As a reference, we calculated �=0.687�11�
through the 1 /L3-extrapolation scheme. Considering the de-
viation as an error indicator, we estimate the critical expo-
nent as

� = 0.675�20� . �17�

In Fig. 6, we plot the approximate critical exponent
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FIG. 4. Tentatively, we turned off the extended interactions,
�JNN,JNNN,D��= �0.2,0 ,0�, and calculated the scaled energy gap
L�E for various D and N=6,8 , . . . ,20 �L=
N�. We notice that the
data are scattered as compared to those of Fig. 2.
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FIG. 5. The approximate critical exponent � �16� is plotted for
�2 / �L1+L2��2 with 6�N1�N2�20 �L1,2=
N1,2�. The least-
squares fit to these data yields �=0.675�16� in the thermodynamic
limit L→�.
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FIG. 6. The approximate critical exponent � /� �18� is plotted
for �2 / �L1+L2��2 with 6�N1�N2�20 �L1,2=
N1,2�. The least-
squares fit to these data yields � /�=1.965�61� in the thermody-
namic limit L→�.
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�/� = ln�����L1�/���L2���D=Dc
/ln�L1/L2� �18�

for �2 / �L1+L2��2 with 6�N1�N2�20 �L1,2=
N1,2�, and
Dc=0.957 �Eq. �15��. Here, the transverse susceptibility ��

is given by the resolvent form,

�� =
1

N
�g�Mx

1

H − Eg
Mx�g� , �19�

with the ground state �g� and the ground-state energy Eg. The
magnetization Mx is given by Mx=�i=1

N Si
x. The resolvent

form �19� is readily calculated with use of the continued-
fraction method �20�.

The least-squares fit to the data in Fig. 6 yields � /�
=1.965�61�. As a reference, we calculated � /�=2.020�42�
through the 1 /L3-extrapolation scheme. Considering the de-
viation as an error indicator, we estimate the critical expo-
nent as

�/� = 1.97�10� . �20�

Last, we argue the abscissa scale 1 /L2 utilized in Figs. 5
and 6. Naively, the scaling theory predicts that dominant cor-
rections to the critical indices should scale like 1 /L� with
�=0.785�20� �11�. On the one hand, as argued in Sec. III A,
such dominant corrections should be suppressed by adjusting
the coupling constants to Eq. �2�, and the convergence is
accelerated more than the naively expected one �16�. Hence,
we set the abscissa scale to 1 /L2 in Figs. 5 and 6.

D. Refined data analysis

In this section, we make an alternative analysis of the
criticality to demonstrate a reliability of our scheme.

In Figs. 7 and 8, we plot the critical exponents

� =
ln�L1/L2�

ln���D�L1�E�L1��/�D�L2�E�L2��	�D=Dc�L1,L2�
�21�

and

�/� = ln�����L1�/���L2���D=Dc�L1,L2�/ln�L1/L2� , �22�

respectively, for �2 / �L1+L2��2 with 6�N1�N2�20. Here,
these exponents are calculated at the approximate critical
point D=Dc�L1 ,L2� �14� rather than at Dc=0.957 as in the
preceding section.

Clearly, these data, Figs. 7 and 8, exhibit accelerated con-
vergence to the thermodynamic limit as compared to those of
Figs. 5 and 6. In fact, the least-squares fit to these data yields
the estimates �=0.658�5� and � /�=1.946�4� with sup-
pressed error margins. Actually, in Fig. 8, the systematic er-
ror dominates the unsystematic one. In such a case, one has
to make a detailed consideration of the nature of corrections
to scaling to ensure the accuracy �amount of error margin� of
the extrapolation. Here, we do not commence making such a
consideration, and accept the estimates, Eqs. �17� and �20�,
obtained less ambiguously in the preceding section. It is not
the purpose of this paper to obtain fully refined estimates for
the critical indices. Such a detailed analysis will be pursued
in succeeding works. In fact, the diagonalization method has
a potential applicability to the frustrated magnetism, for
which the quantum Monte Carlo method suffers from the
notorious sign problem. The Novotny method would be par-
ticularly of use to explore such a problem. Actually, in the
case of the Ising-type anisotropy, the Novotny method was
applied �21� to clarify the nature of the frustration-driven
transition �Lifshitz point�. The present scheme may provide a
basis for surveying such a quantum frustrated system with
the XY-type symmetry.

IV. SUMMARY AND DISCUSSIONS

The criticality of the �2+1�-dimensional XY model �1�
was investigated with the numerical-diagonalization method.
For that purpose, we developed an off-diagonal version of
Novotny’s diagonalization method �Sec. II�, which enables
us to treat a variety of system sizes N=6,8 , . . . ,20 �N is the
number of spins within a cluster�. Moreover, we improved
the finite-size-scaling behavior by adjusting the coupling-
constant parameters to a scale-invariant point �2�.

Owing to these improvements, we could analyze the
simulation data systematically with the finite-size scaling. As
a result, we estimated the critical indices as �=0.675�20� and
� /�=1.97�10�. These indices immediately yield the follow-
ing critical exponents:

� = − 0.025�60�, � = 0.348�49�, and � = 1.330�78� ,

�23�

through the scaling relations.
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FIG. 7. The approximate critical exponent � �21� is plotted for
�2 / �L1+L2��2 with 6�N1�N2�20 �L1,2=
N1,2�. The least-
squares fit to these data yields �=0.658�5� in the thermodynamic
limit L→�.
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FIG. 8. The approximate critical exponent � /� �22� is plotted
for �2 / �L1+L2��2 with 6�N1�N2�20 �L1,2=
N1,2�. The least-
squares fit to these data yields � /�=1.946�4� in the thermodynamic
limit L→�.
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Recent developments on the d=3 XY universality class
are overviewed in Ref. �6�. Our diagonalization result �23� is
in agreement with a Monte Carlo result, �=−0.0151�3�, �
=0.3486�1�, and �=1.3178�2� �11�, and a field-theoretical
result, �=−0.011�4�, �=0.3470�16�, and �=1.3169�20� �8�.
�In Ref. �11�, information from a series-expansion result is
also taken into account.� To the best of our knowledge, no
numerical-diagonalization result has been reported as for the
d=3 XY universality class. According to Ref. �6�, there arose
a discrepancy between the Monte Carlo simulation and the
microgravity-environment experiment; see also Ref. �23�. As
a matter of fact, the microgravity experiment �22� reports a
critical exponent �=−0.0127�3�. In order to resolve this dis-
crepancy, an alternative scheme other than the Monte Carlo
and series-expansion methods would be desirable. Refine-
ment of the diagonalization scheme through considering the
singularity of corrections to scaling might be significant in
order to settle this long-standing issue.
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APPENDIX A: SEARCH FOR A SCALE-INVARIANT
POINT: ELIMINATION OF FINITE-SIZE CORRECTIONS

As mentioned in the Introduction, we simulated the quan-
tum XY model �1�, setting the coupling constants to Eq. �2�;
around this point, we observe eliminated finite-size correc-
tions. In this appendix, we explicate the scheme to determine
the point �2�.

To begin with, we explain the technique to suppress the
finite-size corrections. According to Refs. �15–18�, the finite-
size behavior improves around the renormalization-group
fixed point. That is, the irrelevant interactions may cancel out
around the fixed point. Clearly, such an improvement of the
finite-size behavior allows us to make a systematic finite-
size-scaling analysis of the simulation data. To avoid confu-
sion, we stress that the fixed-point analysis is simply a pre-
liminary one, and subsequently, we perform a large-scale
computer simulation to estimate the critical exponents. In
this sense, as for the Monte Carlo simulation, it might be
more rewarding to enlarge the system size rather than to
extend the coupling-constant parameters and adjust them. On
one hand, it is significant for the numerical diagonalization
to eliminate corrections to scaling, because its tractable sys-
tem size is restricted intrinsically.

In Fig. 9, we present a schematic drawing of the real-
space-decimation procedure. As indicated, we consider a
couple of rectangular clusters with the sizes 22 and 44.
These clusters are labeled by the symbols S and L, respec-
tively. Decimating out the spin variables indicated by the
symbol • within the L cluster, we obtain a coarse-grained
lattice identical to the S cluster. Our aim is to search for a
scale-invariant point with respect to the real-space decima-
tion.

Before going into the fixed-point analysis, we set up the
simulation scheme for the clusters, S and L. We cast the

Hamiltonian �1� into the following plaquette-based expres-
sion:

H = �
�ijkl�

Hijkl
� + D�

i

�Si
z�2, �A1�

with the plaquette interaction

Hijkl
� = −

JNN

2
�Si

xSj
x + Si

ySj
y + Sj

xSl
x + Sj

ySl
y

+ Sk
xSl

x + Sk
ySl

y + Si
xSk

x + Si
ySk

y� �A2�

− JNNN�Si
xSl

x + Si
ySl

y + Sj
xSk

x + Sj
ySk

y� �A3�

+ D��Si
z + Sj

z + Sk
z + Sl

z�2. �A4�

�The denominator of the coefficient JNN compensates the du-
plicated sum.� Hence, the Hamiltonian for the S cluster is
given by

HS = H1234
� + D�

i=1

4

�Si
z�2, �A5�

with the replacement

JNN,NNN → �1 + b�JNN,NNN. �A6�

Here, the parameter b controls the boundary interaction
strength, and hereafter, we set b=0.7; we consider the valid-
ity of this choice afterward. The boundary-interaction param-
eter b interpolates smoothly the open, b=0, and periodic, b
=1, boundary conditions. The point is that for the two-site
�L=2� system, the bulk interaction, S1

�S2
�, and the boundary

interaction, S2
�S1

�, coincide with each other. Hence, for the S
cluster, the boundary interaction b is freely tunable without
violating the translation invariance. We make use of this re-
dundancy to obtain the fixed point reliably. On the other
hand, the L cluster does not have such a redundancy, and the
Hamiltonian HL is given by Eq. �1� with L=4 unambigu-
ously. We diagonalize these Hamiltonian matrices HS,L nu-
merically; note that we employ the conventional diagonaliza-

~

Decimating out
the spins.

S

L
S2

S3S1

S4S2

~

~

~
S3S1

S4

FIG. 9. A schematic drawing of the real-space renormalization
group �decimation� for the d=2 XY model �1� is presented. Through
decimating out the spin variables indicated by the symbol • within
the L cluster, we obtain a coarse-grained lattice identical to the S
cluster. Imposing the scale-invariance conditions, Eqs. �A8�–�A10�,
we arrive at the fixed point �2�.
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tion method, rather than the off-diagonal Novotny method
developed in Sec. II.

With use of the simulation technique developed above, we
search for the fixed point of the real-space decimation. We
survey the parameter space �JNN,JNNN,D��, regarding D as
a unit of energy; namely, we set

D = 1 �A7�

throughout this section. Thereby, we impose the following
conditions:

2�ES = 4�EL, �A8�

�S1
xS2

x�S = �S̃1
xS̃2

x�L, �A9�

�S1
xS4

x�S = �S̃1
xS̃4

x�L, �A10�

as a scale-invariance criterion. The symbol �ES,L denotes the
excitation gap for the respective clusters. The arrangement of

the spin variables, S1,2,3,4
� and S̃1,2,3,4

� , is shown in Fig. 9. The
symbol �¯�S,L denotes the ground-state average for the re-
spective clusters. The first equality �A8� comes from the
scale invariance of the scaled energy gap, L�E. �We refer
readers to Ref. �24�, where the author utilizes such a critical-
amplitude relation successfully to analyze the

renormalization-group flow numerically.� On the one hand,
the remaining equations, Eqs. �A9� and �A10�, are the scale-
invariance conditions �25� regarding the correlation func-
tions for the edge and diagonal spins, respectively.

The conditions, Eqs. �A8�–�A10�, are the nonlinear equa-
tions with respect to �JNN,JNNN,D��. In order to obtain the
solution, we employed the Newton method, and found that
the following nontrivial solution does exist:

�JNN,JNNN,D�� = �0.158 242 810 160,0.058 561 393 564,

0.100 351 043 89� . �A11�

The last digits may be uncertain because of the round-off
errors.

Last, we argue the validity of the above solution �A11�
and the boundary condition b=0.7. In Sec. III, via the finite-
size-scaling analysis, we obtained Dc=0.957�25� �15�. Ap-
parently, this result is consistent with D=1 postulated in Eq.
�A7�. Moreover, the simulation data in Fig. 2 exhibit sup-
pressed finite-size corrections, as compared to those of the
ordinary XY model, Fig. 6. These features validate the choice
of the boundary condition b=0.7 as well as the reliability of
the fixed point �A11�. Furthermore, we point out that the
boundary condition b=0.7 is reminiscent of b=0.4 utilized in
the fixed-point analysis of the d=3 Ising ferromagnet �16�.
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